欢迎来到 - 多学网 - http://www.duoxue8.com !
当前位置:多学网学习教育小学试卷小学数学试卷小学六年级数学试卷小学数学应用题典型详解26-幻方问题

小学数学应用题典型详解26-幻方问题

[11-11 12:01:24]   来源:http://www.duoxue8.com  小学六年级数学试卷   阅读:944
小学数学应用题典型详解26-幻方问题,标签:小学六年级数学试卷资料大全,http://www.duoxue8.com

  26  幻方问题

 【含义】    把n×n个自然数排在正方形的格子中,使各行、各列以及对角线上的各数之和都相等,这样的图叫做幻方。最简单的幻方是三级幻方。

 

 【数量关系】  每行、每列、每条对角线上各数的和都相等,这个“和”叫做“幻和”。

                  三级幻方的幻和=45÷3=15   

                  五级幻方的幻和=325÷5=65

 

 【解题思路和方法】首先要确定每行、每列以及每条对角线上各数的和(即幻和),其次是确定正中间方格的数,然后再确定其它方格中的数。

 

 例1    把1,2,3,4,5,6,7,8,9这九个数填入九个方格中,使每行、每列、每条对角线上三个数的和相等。

 解  幻和的3倍正好等于这九个数的和,所以幻和为

         (1+2+3+4+5+6+7+8+9)÷3=45÷3=15

 九个数在这八条线上反复出现构成幻和时,每个数用到的次数不全相同,最中心的那个数要用到四次(即出现在中行、中列、和两条对角线这四条线上),四角的四个数各用到三次,其余的四个数各用到两次。看来,用到四次的“中心数”地位重要,宜优先考虑。

 设“中心数”为Χ,因为Χ出现在四条线上,而每条线上三个数之和等于15,所以  (1+2+3+4+5+6+7+8+9)+(4-1)Χ=15×4

2

7

6

9

5

1

4

3

8

        即   45+3Χ=60    所以     Χ=5

            接着用奇偶分析法寻找其余四个偶数的位置,它们

        分别在四个角,再确定其余四个奇数的位置,它们分别

        在中行、中列,进一步尝试,容易得到正确的结果。

 

    例2    把2,3,4,5,6,7,8,9,10这九个数填到九个方格中,

        使每行、每列、以及对角线上的各数之和都相等。

            解  只有三行,三行用完了所给的9个数,所以每行三数之和为

                   (2+3+4+5+6+7+8+9+10)÷3=18

    假设符合要求的数都已经填好,那么三行、三列、两条对角线共8行上的三个数之和都等于18,我们看18能写成哪三个数之和:

                最大数是10:18=10+6+2=10+5+3

                最大数是9: 18=9+7+2=9+6+3=9+5+4

                最大数是8: 18=8+7+3=8+6+4

                最大数是7: 18=7+6+5     刚好写成8个算式。

    首先确定正中间方格的数。第二横行、第二竖行、两个斜行都用到正中间方格的数,共用了四次。观察上述8个算式,只有6被用了4次,所以正中间方格中应填6。

9

2

7

4

6

8

5

10

3

然后确定四个角的数。四个角的数都用了三次,而上述8个算式中只有9、7、5、3被用了三次,所以9、7、5、3应填在四个角上。但还应兼顾两条对角线上三个数的和都为18。

最后确定其它方格中的数。如图。


小学数学应用题典型详解26-幻方问题 结束。
Tag: 应用题  小学数学   小学六年级数学试卷小学六年级数学试卷资料大全小学试卷 - 小学数学试卷 - 小学六年级数学试卷