欢迎来到 - 多学网 - http://www.duoxue8.com !
当前位置:多学网学习教育教案大全八年级数学教案数学 -平行线等分线段定理 -数学教案

数学 -平行线等分线段定理 -数学教案

[11-11 12:03:49]   来源:http://www.duoxue8.com  八年级数学教案   阅读:562
数学 -平行线等分线段定理 -数学教案,标签:八年级数学教案资料大全,http://www.duoxue8.com
>总结,由此得到平行线等分线段定理)

  平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.

  注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.

  下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).

  已知:如图,直线 , .

  求证: .

 

  分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得 ),通过全等三角形性质,即可得到要证的结论.

  (引导学生找出另一种证法)

  分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得 .

  证明:过 点作 分别交 、 于点 、 ,得 和 ,如图.

 

  ∴

  ∵ ,

  ∴

  又∵ , ,

  ∴

  ∴

  为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).

    

  引导学生观察下图,在梯形 中, , ,则可得到 ,由此得出推论 1.

 

  推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

  再引导学生观察下图,在 中, , ,则可得到 ,由此得出推论2.

 

  推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.

  注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.

  接下来讲如何利用平行线等分线段定理来任意等分一条线段.

  例  已知:如图,线段 .

  求作:线段 的五等分点.

  作法:①作射线 .

  ②在射线 上以任意长顺次截取 .

  ③连结 .

  ④过点 . 、 、 分别作 的平行线 、 、 、 ,分别交 于点 、 、 、 .

    、 、 、 就是所求的五等分点.

  (说明略,由学生口述即可)

 

  【>总结、扩展】

  小结:

  (l)平行线等分线段定理及推论.

  (2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.

  (3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.

  (4)应用定理任意等分一条线段.

  八、布置作业

  教材P188中A组2、9

  九、板书设计


数学教案-平行线等分线段定理一文由www.deyou8.com搜集整理,版权归作者所有,转载请注明出处!

数学 -平行线等分线段定理 -数学教案 结束。
Tag: 数学  平行线   八年级数学教案八年级数学教案资料大全教案大全 - 八年级数学教案